Arborist Report

Department of Families and Communities Property Strathmont Centre Site Grand Junction Road Oakden

For the Land Management Corporation

24 September 2010 *tas*-1259-10

alan cameron principal consultant

Level 5 Dip Arb ISA Cert BLArch GDip Urban Plng QTRA licensed

tree assessment sevices pty ltd 14 henry street croydon sa 5008

tel 8346 4262 mob 0407 706 030

alan.cameron@internode.on.net

1 BRIEF

The Land Management Corporation (LMC) seeks to release this Government owned property into public ownership.

The LMC seeks to have all known site elements and components identified and assessed to assist this process.

The identified subject 15.7Ha portion of the Strathmont site is a broad area with multiple arrangements of trees, land use and topography. The Strathmont Centre once occupied this eastern portion of the larger overall property, essentially left vacant with remaining trees for some years prior to this release.

This report examines the health and species attributes of these trees to therefore convey a preliminary opinion to prospective purchasers as to whether

- the subject trees offer important contributions to the property and to the local area
- they are considered likely to require retention
- they pose a potential constraint to site redevelopment or not.

Please be reminded that the City of Port Adelaide and Enfield as the local authority is the final arbitrator of tree significance and retention, possibly regardless of opinions about tree retention / removal presented by the author of this report.

Alan Cameron, principal consulting arborist of Tree Assessment Services inspected the site, trees and locality on three occasions in August and September.

His qualifications as an ISA Certified Arborist (Dip Arboriculture AQF Level 5 Hortico), Landscape Architect (B L Arch B App Sc Canberra) and Urban Planner (PG Dip Planning Uni SA) enables him to provide qualified and transparent arboricultural advice with regards trees, site development, visual and landscape amenity, landscape design, heritage and urban planning matters.

All matters addressed in this report have been undertaken to the best of my ability.

Should any issues arise which require further consideration, I will be happy to assist.

Yours faithfully

Alan Cameron

Director

Tree Assessment Services

ISA Certified Arborist (Dip Arboriculture AQF Level 5 Hortico), Landscape Architect (B L Arch B App Sc Canberra) and Urban Planner (PG Dip Planning Uni SA)

2 METHODOLOGY

The spreadsheet of the overall tree audit offers guidance as to whether trees should be considered as suitable for retention or removal within the context of the Development Act and their relative condition.

Findings are categorised into

R-I Regulated- Important

Trees which exceed the 2000mm trunk circumference criteria and offer amenic importance. The Development Act 1999 contends that a Significant tree offers attributes of importance. These trees are high quality specimens to which application for removal would unlikely be attained. Retention and protection is recommended. The root radius provides preliminary guidance as to offsets for nearby proposed development.

R-U Regulated Unimportant

Trees that exceed the 2000mm trunk circumference test but are either in poor health and condition or are dead. As the tree is considered not to offer attributes of importance, removal is therefore likely able to be argued. Note that Council may not agree to the removal of large dead Red Gum trees as these may be considered to offer important habitat. Pruning of dead trees to reduce risk exposure to future pedestrian or other use will probably be required.

U-I Unregulated Important

These are trees with trunks less than 2000mm circumference not protected by the Development Act which are in good health and condition. These trees potentially offer future importance if retained.

U-U Unregulated Unimportant

These are trees with trunks less than 2000mm circumference not protected by the Development Act. These trees are of poor quality and their removal is suggested.

Circumference

Tree listings identified in red indicates the tree is currently Unregulated Important but will likely become Regulated Important and therefore could become protected by the Development Act in a few years.

Root radius of trees considered Important, either Regulated or Unregulated by the Development Act, have been nominated to assist the consideration of suitable development offsets. However, potential risks posed by large limb breakout from large trees should be further identified if accuracy is required to safely site engineered structures.

3 PRINCIPAL FINDINGS

Surveyors have identified 369 trees across and near to the subject site.

Of these 369 tree audits

- 22 trees are Regulated and considered to offer Important attributes of Significance (GREEN band highlighted in audit spreadsheets)
- 81 trees are Regulated but are considered to be Unimportant due to poor health and/or structural condition and not therefore Significant (PURPLE band highlight in audit spreadsheets).
- 6 trees are considered likely to become Regulated Important specimens within the next 2-3 years (RED highlight in audit spreadsheets),
- 66 trees are Unregulated but are considered to offer importance as good quality specimens in their own right (BLUE band highlight in audit spreadsheets).
- The balance or 200 trees are Unregulated and considered to be in poor health and/or structural condition (ORANGE band in audit spreadsheet).

Essentially, it would seem that the site was developed or planted about 40-50 years ago. A few larger trees may have been retained amidst site works.

The style of planting is possibly reminiscent of the Public Works whereby an unusual range of native trees, many not indigenous or local, were planted out, at times in grid formation, possibly for the purpose of site infill, generating a disparate arrangement of tree species, sizes and juxtapositions.

A feature of the planting on site is the clumping of about 5-6 trees in circles.

There does not appear to be any response to site requirements such as main road frontages and internal roadways, indicating that forward planting may have been conducted with subsequent development placed in areas cleared of trees.

The results of the audit generally indicate that many native trees are small in poor condition. Others which have done better can be isolated or offer limited amenity to likely infill urban development.

Of these, perhaps the Sugar Gum, with its capacity to drop large diameter elongated limbs from height, is probably the most unsuited for urban incorporation.

Features of the site include the south-east to north-west creek and pond at the Grand Junction Rd end with massive Willows growing in saturated ground. A spring is noted emanating about halfway along the driveway which extends east from the car park.

4 LEGISLATIVE RECOMMENDATIONS

Few if any of the trees on site offer reasonable long term amenity to a residentially redeveloped site. Good specimens are few and far between, which makes isolated retention potentially difficult.

In that context, most centrally located trees on site should not be considered to offer amenic importance or be considered a potential constraint to redevelopment objectives posed by the site's zoning as Comprehensive (Residential) Development (Policy Area 44) as per the City of Port Adelaide and Enfield's Development Plan.

No specific reference is made of the Oakden site or in respect of amenic vegetation in the Desired Character Statement, but Objective 6 refers to the open landscaped character of the southern side of Grand Junction Road between Fosters Rd and Northfield Fire Station.

Objective 7 follows to seek preservation of the open character by requiring a tree audit, this could infer that existing vegetation located within 20 metres of the Sudholz and Grand Junction Road reserves be retained for inclusion in a future screen.

Significant trees found internal to this 20 metre edge zone could therefore be regarded as unimportant to which Council may permit removal in accordance with the Objectives and Principles of Development Control – Significant Trees:

Objective 123

the conservation of significant trees should occur in balance with achieving appropriate development.

In this case, the Zoning nominates that Comprehensive Redevelopment or conversion of the previous land use should occur, thus considered appropriate development to which therefore the conservation of any significant trees within the internal portions of the site beyond a 20 metre offset from Sudholz and Grand Junction Roads should not be considered important to the attainment of the Zone's Objectives.

PDC 346

Where a significant tree:

(a) makes an important contribution to the character or amenity of the local area development should preserve these attributes.

As only the trees contained within a 20 metres of the Sudholz and Grand Junction Roads reserves may be considered to offer amenic importance, trees internal to this area are therefore not considered to offer importance to which development should be required to preserve.

Approximately 85 audited specimens are growing in the 20 metre buffer area.

Of these, 8 are classified Significant, 30 are Regulated Unimportant, 22 are Unregulated Important and 53 are Unregulated Unimportant.

Essentially this means that any tree, regardless of legal status, growing in this zone which contributes to the screening of the site could be usefully retained as forward planting.

At least in the initial assessment, trees in this area should be kept until a determination of the value of their contribution to screening is able to be made.

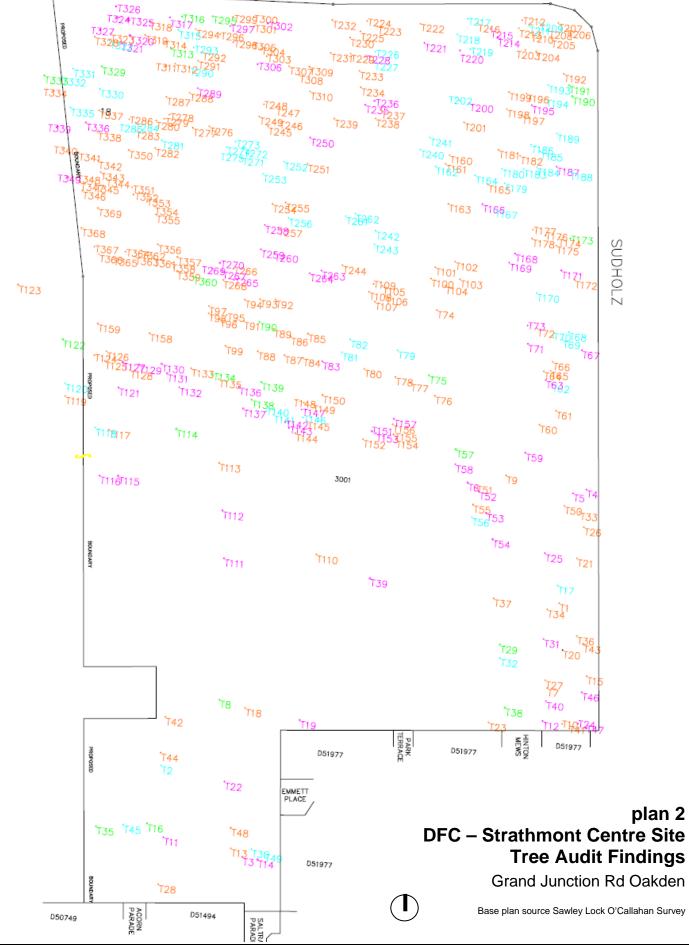
Applications to Port Adelaide and Enfield Council could be required for the removal of any Significant (Regulated Important) Tree in this zone.

Site Notes

- No obvious or consistent structure to planting design
- Random planting
- Clusters of trees in rings to northern sector.
- Remnant exotic species to remnant courtyard areas southern sector.
- Quiet and peaceful parkland setting amidst busy arterial roads.

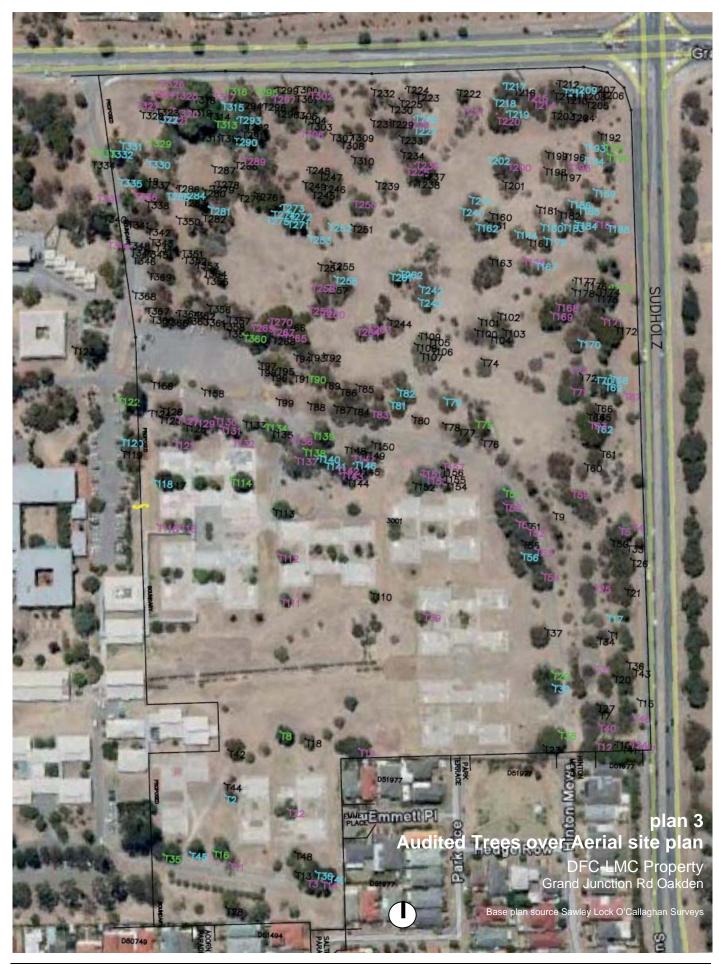
aerial 1 DFC – Strathmont Centre Site

T


Grand Junction Rd Oakden

Base plan source LMC

TREE AUDIT SURVEY


JUNCTION

Arborist Report-Final Issue-DFC-LMC Property-Strathmont Centre-Oakden-tas-1262-November-2010

TREE AUDIT SURVEY OVER AERIAL

Arborist Report-Final Issue-DFC-LMC Property-Strathmont Centre-Oakden-tas-1262-November-2010

TREE AUDIT- LMC -DFC SITE - STRATHMONT CENTRE OAKDEN

No.	Species	Circ	Height	Age	Vigour	Canopy	Structure	RLE	Importance	Root extent
1	Esp	1120	5	25-40	F	4143	P	SM	UU	
2	CAS	1750	11	25-40	G	3333	F	М	UI	6.7
3	SG	2120	10	25-40	G	68310	F	ML	RU	7.9
4	AR	2360	12	25-40	GF	6355	F	SM	RU	8.8
6	SM	2430	8	25-40	G	8637	Р	SM	RU	9.1
7	SUG	1220	5	25-40	P	2343	F	S	UU	
8	EB	2100	15	25-40	EG	6645	G	ML	R I	7.9
9	Esp	1830	15	25-40	D	8669	P	0	UU	
10	SM	1580	8	25-40	G	7646	F	SM	U U	
11	CAS	2170	7	25-40	D	5835	P	0	RU	8.1
12	SUG	1210 980 350	8	25-40	F	6646	F	S	RU	6.1
13	QB	1210 000 000	6	25-40	G	4333	GF	M	UU	0.1
14	SG	1460 1500	8	25-40	G	8864	FP	SM	RU	7.9
14	SUG	1400 1500	12	25-40	G	4455	G	M		7.9
15				25-40	G					77
10	CAS MP	2030 1580	10	25-40	G	5554	G	ML	R I U I	7.7
17			15 8	25-40	GF	3333	G	S		5.8
	Esp	1540				5646			00	12.0
19	SM	2230 2450	9	25-40	G	8040	P	S	RU	12.6
20	EP	1560	5	25-40	G	6344	P	SM	UU	
21	Esp	1410	4	25-40	G	3334	F	M	00	
22	PA	2220	5	25-40	G	8643	P	S	RU	8.4
23	Esp	1630	8	25-40	G	3236	P	S	UU	
24	SM	1680 470	7	25-40	G	7001	F	SM	RU	6.6
25	Esp	1210 1250	4	25-40	Р	5344	F	S	RU	6.6
26	Esp	1460	6	25-40	P	6464	P	S	UU	
27	SUG	1380	5	25-40	G	5444	F	ML	UU	
28	SP	1830	12	25-40	F	7675	F	SM	UU	
29	SUG	3490	20	25-40	G	6666	G F	ML	RI	13.3
30	CAS	1560	8	25-40	G	2443	F	ML	UI	5.8
31	Esp	680 1210	4	25-40	G F	5144	Р	SM	RU	5.3
32	SM	1480	8	25-40	G	4488	G	М	UI	5.6
33	Esp	1430	6	25-40	G	4244	F	М	UU	
34	Esp	1430	4	25-40	G F	5034	FP	SM	UU	
35	CAS	2280	10	25-40	G	4454	G	ML	RI	8.7
36	Esp	1620	8	25-40	G F	7434	F	М	UU	
37	SABG	1770	6	25-40	G F	4654	F	ML	UU	
- 38	EB	3350	25	25-40	G	88810	G	ML	RI	12.8
39	WM	2200 900 1350	14	25-40	G	3355	P	S	RU	10.4
40	SUG	1420 920 960	6	25-40	G	2444	F	ML	RU	7.4
41	SM	1470	8	25-40	G	9224	F	М	UU	
42	SABG	1390	8	25-40	G	8545	F	ML	UU	
43	Esp	1470	6	25-40	GF	7457	G	M	UU	
44	CAS	800	4	25-40	D	4615	P	0	UU	
45	CAS	1910	10	25-40	G	6343	G	М	UI	7.3
46	Esp		10	25-40	GF	6444		SM	RU	6.1
47	SM	2220	10	25-40	G	9 2 12 4	FP	SM	RU	8.5
48	QB	1680	5	25-40	E	2132	F	SM	UU	0.5
40	CAS	1690	8	25-40	E	4445	G	ML	U I	6.4
50	SUG	1520	12	25-40		4 4 4 5			01	0.4
				25-40			FP	ML		
51	SM	1580	12	25-40	G	1264	FP	М	UU	

No.	Species	Circ	Height	Age	Vigour	Canopy	Structure	RLE	Importance	Root extent
52	SM	1210 1570	12		G	10 7 7 10		S	RU	7.6
53	SUG	2510	20	25-40	G	6543	P	SM	RU	9.6
54	SM	1280 1080 2040	10	25-40	G	8582	F	SM	RU	10.1
55	SUG	1970	8	25-40	FΡ	0 5 5 6	Р	S	UU	
56	SUG	1560	4	25-40	GF	2618	F	ML	UΙ	5.9
57	ES	1820 1680 1300	18	25-40	G	6853	G	М	R I	10.7
58	SABG	1450	8	25-40	Р	5822	Р	S	UU	
59	SM	950 350 480 570	5	25-40	G	4345	F	SM	UU	
60	Esp	1890	8	25-40	P	4433	G	S	UU	
61	Esp	1510	6	25-40	G	6665	F	М	UU	
62	SM	1980	15	25-40	E	6854	G	ML	υı	7.2
63	SM	1300 790	15		G	10 3 1 5	F	М	RU	5.1
64	Esp	1470	4	25-40	GF	4 2 2 5	F	M	UU	
65	Esp	1180	4	25-40	P	3431	F	S	UU	
66	Esp	1250	5	25-40	GF	5344	G	ML	UU	
67	AR	1000 370	4	25-40	G	2222	P	SM	RU	4.1
68	SUG	1740	15	25-40	G	4345	G	L	UI	6.6
69	SUG	1290	10	25-40	G	1331	G		UI	4.9
70	SUG	1480	12	25-40	G	4222	G	-	U I	5.6
71	SUG	1140 1150	5	25-40	G	7365	FP	ML	RU	6.2
72	PG	1380	5	25-40	F	5343	P	SM	UU	0.2
73	PG	1340 630 980	4	25-40	GF	5324	F	M	RU	6.8
74	EP	1520	8	25-40	P	2233	F	SM	UU	0.0
75	ES	2140	12	25-40	G	6686	G	ML	RI	8.1
76	ES	1710	5	25-40	D	6162	P	0	UU	0.1
77	ES	1710	12	25-40	G	4564	F	ML	U U	
78	ES	1530	15	25-40	D	6336	F	0	UU	
79	ES	1630	13	25-40	G	4445	G	ML	U U I	6.2
80	ES	1410	10	25-40	D	6363	F	0	0.0	0.2
81	ES	1610	15		G	5444	G	ML	U U I	6.1
82	SUG	1900	15	25-40	G	8866	GF	ML	U I	7.2
83	ES	2290	15		G	8486	F	M	RU	8.7
84	ES	1760			F P	8566		SM		0.7
85	ES	1780	12	25-40	D	8664	F	0	UU	
86	ES	1860	15		D	8464	F	0	UU	
87	ES	1740	15	25-40	F P	7757	F	SM	UU	
88				25-40		8888			UU	
88	ES ES	1810 1680	15 15	25-40	D	8864	F	0	U U	
89 90	ES		15	25-40		8684		M	RI	7.9
91	ES	1620		25-40	D	8266		0	UU	7.9
91	Esp	1290	12	25-40	F	4344	F	SM	UU	
92			15		F	6354	P	SM	UU	
93 94	Esp		10	25-40		6344	F	ML	U U	
94 95	Esp SUG	1340	12	25-40		4444	F	ML	UU	
95		1460		25-40	E				UU	
96 97	SUG EP		10	25-40	F P	4608	F P F P	M	U U	
		1330	8			4266		SM		
98	Esp	1380	6	25-40	F P	2406	P	SM	<u>U U</u>	
99	ES	1820	15	25-40	D	8878		0	<u>U U</u>	
100	ES	1740	8	25-40	G	5446	G	ML	<u>U U</u>	
101	ES	1670	8	25-40	GF	4444	G	ML	00	
102	SUG	1290	8	25-40	GF	5444	G	ML	<u>U U</u>	
103	SUG	1650	8	25-40	G	4444	G	ML	<u>U U</u>	
104	ES	1360	6	25-40	F	4333	G	М	UU	ļļ

No.	Species	Circ	Height	Age	Vigour	Canopy	Structure	RLE	Importance	Root extent
105	Esp	1280	6	25-40	G	4242	G	ML	UU	
106	Esp	1480	5	25-40	G	4332	F	ML	UU	
107	Esp	1680	12	25-40	G	6461	G	ML	U U	
108	Esp	1470	6	25-40	G	6444	G	ML	UU	
109	Esp	1610	6	25-40	G	4234	G	ML	<u> </u>	
110	QB	1680	5	25-40	E	3333	G	ML	UU	
111	QB	1120 980	5	25-40	E	4333	G	ML	RU	5.6
112	TT	1200 1200	8	25-40	GF	3434	F	SM	RU	6.5
113	ROB	1760	8	25-40	P	8566	P	S	UU	0.0
114	TT	2270 1350 1120	12	25-40	G	5885	P	M	RI	10.9
115	CAL	1200 1200 1400	6	25-40	G	3532	F	М	RU	8.4
116	CAL	900 900 900	8	25-40	G	4333	F	M	RU	6
117	SA	1920	10	25-40	G	3344	F P	M	UU	
118	ES	1760	10	25-40	G	5634	GF	М	UI	6.7
119	Esp	1250	6	25-40	F	3564	P	SM	UU	
120	SABG	1350	6	25-40	G	3434	GF		UI	5.1
121	CAS	1250 870	6	25-40	GF	4423	F	M	RU	5.8
122	SP	2900	25	25-40	E	10 7 10 10	G	M	RI	11.1
124	SABG	1580	8	25-40	P	5342	F	SM	UU	
125	SABG	1680	6	25-40	F	2424	F	M	U U	
126	Esp	1370	6	25-40	G	4324	F P	SM	U U	
127	SM	920 1140	8	25-40	G	0868	P	SM	RU	5.6
128	SUG	1730	8	25-40	G	4 10 4 3	P	M		5.0
129	SUG	2610	8	25-40	G	6363	F	ML	RU	9.9
130	SUG	2370	8	25-40	G	6436	F	ML	RU	9
131	SUG	2630	8	25-40	G	3533	P	ML	RU	10.1
132	KP	850 920	4	25-40	D	4453	P	0	RU	4.8
133	KP	1250	6	25-40	F	4333	F	SM		4.0
134	EM	1740 1550	10	25-40	EG	8448	G	1	RI	8.9
135	EM	1250	8	25-40	GF	3641	F	ML	UU	0.5
136	ES	2950	20	25-40	D	5535	P	0	RU	11.2
137	ES	3040	20	25-40	F P	4659	P	S	RU	11.6
138	Esp	2430	20		GF	6246	F	ML	R I	9.2
139	SUG	2090	25	25-40	G	8464	GF	ML	RI	8
140	CAS	1410	8	25-40	F	4433	G	M	UI	5.4
141	CAS	1730	10	25-40	GF	4362	GF	ML	U I	6.6
142	CAS	960 1230	10	25-40	G	3223	P	SM	RU	6.0
143	CAS		6	25-40	F	2332	P	SM	RU	6.6
144	Esp	1400 000 200 200	6	25-40	D	5314	P	0	00	0.0
145	SABG	1290	10	25-40	F	2434	F	SM	U U	
146	ES	1680	12	25-40	G	3332	G	M	UI	6.4
147	CAS		5	25-40	P	1121	P	S	RU	6.7
148	CAS	1530	6	25-40	F	4242	G	ML	00	0.7
149	SABG	1360	6	25-40	G	4352	F	ML	U U	
150	CAS	1680	5	25-40	D	4335	P	0	UU	
151	Esp	2250	10	25-40	F P	9199	FP	SM	RU	8.6
152	FS	1480	5	25-40	D	5545	G	0		0.0
153	CAL	900 900 900 900	4	25-40	G	2332	F	M	RU	6.9
155	CAL	9 STEMS	4	25-40	G	3232	F	M	00	0.5
156	CAL	6 STEMS	4	25-40	G	1143	P	SM	UU	
157	CAL	450 680 1230	4	25-40	GF	3223	F	M	RU	5.6
158	CAL	1260 310 580	3	25-40	G	4334	G	M	RU	5.4
150	CAL	1450 1820	3	25-40	G	4 3 3 4	G	M	RU	7
100	UAL	1400 1020	3	20-40	0	7404	6	IVI	K U	/

No.	Species	Circ	Height	Age	Vigour	Canopy	Structure	RLE	Importance	Root extent
160	SUG	1380	15	25-40	F	6444	G F	М	UU	
161	SUG	1270	15	25-40	G	4433	F	ML	UU	
162	SUG	1540	15	25-40	G	6446	G F	ML	UΙ	5.9
163	Esp	1410	4	25-40	FΡ	4433	F	SM	UU	
164	SUG	1330	8	25-40	G	6464	G	L	UΙ	5
165	SUG	1520	5	25-40	G	1333	F P	М	UU	
166	Esp	950 1700	6	25-40	G	4433	P	SM	RU	7.4
167	Esp	1790	8	25-40	G	6444	G	М	UI	6.8
168	SM	1210 1130	12	25-40	F	5348	F	SM	RU	6.3
169	SM	1610 710	12	25-40	G	4435	F	SM	RU	6.7
170	Esp	1360	4	25-40	G	4455	G	ML	UI	5.2
171	SM	1050 940 920	5	25-40	F	6334	F	SM	RU	6.4
172	SM	1950	8	25-40	G	6888	F	М	UU	
173	SUG	2060	12	25-40	G	8454	G	L	R I	7.8
174	SUG	1410	12	25-40	GF	4322	F	ML	UU	
175	SUG	1460	12	25-40	G	3433	F	ML	UU	
176	AR	1650	12	25-40	F	7545	G	SM	UU	
177	AR	1430	6	25-40	F	3233	F	SM	UU	
178	AR	1580	12	25-40	F	4323	G	SM	UU	
179	SUG	1220	8	25-40	G	2444	G	L	UI	4.6
180	SUG	1370	10		G	4433	G	L	UI	5.2
181	SUG	1480	6		D	3 3 3 3	Р	0	UU	
182	SUG	1410	5		G F	4432	F	М	UU	
183	SUG	1360	6	25-40	G	3344	G	L	UI	5.2
184	SUG	1380	10		G	4446	G	L	UI	5.2
185	SUG	1570	12		G	4343		L	UI	6
186	SUG	1450	10		G	5454	G	L	UI	5.5
187	Esp	1210 970	6		F	6424	F	М	RU	5.9
188	Esp	1390	8		G	8886	G	ML	UI	5.3
189	ES	1620	18		G	8646	G	ML	UI	6.1
190	RRG	1480 880	15		G	8864	G F	L	R I	6.6
191	RRG	990 900 1080	8		G	8344	F	ML	R I	6.6
192	EP	1260						М	UU	
193	Esp	1190						ML	UI	4.5
194	Esp	1080				2333		ML	UI	4.1
195	Esp	750 680				3431	FP	SM	RU	3.8
196	Esp	1100			G	4444	F	М	UU	
198	SUG	1260	8		GF	4444	F P	M	0.0	
199	Esp	1600			GF	6446		M	00	7.0
200	SUG	2050				6662		L	RU	7.8
201	SUG	1390	15		F	4466		M	0.0	6.2
202	SUG	1620			G	6646		L	UI	6.2
203	Esp	1230			F P	4434	G	SM	00	
204	EP	1200			D	6444	P	0	<u> </u>	
205	Esp	1120			F	2664	P	SM	<u> </u>	
206	Esp	1230			F	4886	P	SM	00	
207	Esp	1240			F	8664		SM	<u> </u>	
208	Esp	1280			F	10666	P	SM	0.0	6.0
209 210	SG SG	1800 1340			G	6466		ML	U I U U	6.8
210	SG	1340			G	2466 3223		M ML	U U I	3.9
212	Esp	1240						M	UU	
212		1240			P			S	U	
213	Esp	1100	0	23-40	۲	3330	F	3	00	

No.	Species	Circ	Height	Age	Vigour	Canopy	Structure	RLE	Importance	Root extent
214	SM	1020 960 1080	5	25-40	F	4554	F	SM	RU	6.7
215	Esp	1120 1030	6	25-40	F	6544	F	SM	RU	5.8
216	SM	1460	6	25-40	F	6462	G F	М	UU	
217	Esp	1950	8	25-40	G	10488	F	М	UI	7.4
218	PG	1320	6	25-40	GF	4444	G	ML	UI	5.1
219	SM	1650	12	25-40	G	8464	G	М	UI	6.3
220	SM	1630 970	12	25-40	G	6626	G F	М	RU	7.2
221	AR	1140 1420	12	25-40	FΡ	6488	FP	S	RU	6.9
222	MP	1580	6	25-40	G	2343	P	SM	UU	
223	Esp	1480	6	25-40	FΡ	4444	P	S	UU	
224	SM	1230	4	25-40	FΡ	4134	F	S	UU	
225	SUG	1420	12	25-40	D	6666	P	0	UU	
226	AR	1360	8	25-40	G	6443	G	М	UI	5.2
227	AR	1680	8	25-40	G	3345	G	М	UI	6.4
228	AR	1120 1360	6	25-40	G	3404	P	SM	RU	6.7
229	Esp	1260	6	25-40	G	6666	G F	М	UU	
230	Esp	1150	4	25-40	F	2414	F P	SM	UU	
231	Esp	1210	5	25-40	F	6644	F	SM	UU	
232	SUG	1830	22	25-40	G	8644	F	М	UU	
233	Esp	1510	6	25-40	G	6446	F	М	UU	
234	Esp	1530	6	25-40	G	8636	F	М	UU	
235	SM	860 1350	12	25-40	G F	4333	F	SM	RU	6.1
236	SM	1120 1790	15	25-40	G	10886	G	М	RU	6.8
237	Esp	1220	3	25-40	F	1241	F	SM	UU	
238	EP	1360	6	25-40	FΡ	3332	F P	SM	UU	
239	AR	1470	6	25-40	F	4446	F	S	UU	
240	SUG	1210	12	25-40	G	6224	G F	М	UI	4.6
241	Esp	1340	15	25-40	G	6444	G	М	UI	5.1
242	Esp	1880	8	25-40	G	6488	G F	М	UI	7.1
243	Esp	1150	6	25-40	G	4664	G	ML	UI	4.4
244	Esp	1620	8	25-40	D	4060	P	0	UU	
245	Esp	1250	10	25-40	G F	3454	F	М	UU	
246	EG	1300	10	25-40	G F	4444	F	М	UU	
247	Esp	1110	8	25-40	FΡ	6364	F	SM	UU	
248	Esp	1240	8	25-40	FΡ	4242	P	S	UU	
249	Esp	1210	10	25-40	G F	6466	F	М	UU	
250	SM	850 970 1120	6	25-40	G F	86810	G F	SM	RU	6.5
251	Esp	1470	4	25-40	F P	4344	F P	S	UU	
252	Esp	1340	12	25-40	G	3222	G F	М	UI	5.1
253	Esp	1260	12	25-40	G F	2442	G F	М	UI	4.8
254	Esp	1580	18	25-40	F	6224	G	SM	UU	
255	Esp	1870	20	25-40	D	6646	Р	0	UU	
256	Esp	1670	22	25-40	G	6444	G	М	UI	6.3
257	Esp	1830	22	25-40	D	6666	Р	0	UU	
258	Esp	2050	20	25-40	G	6646	G	М	RU	7.8
259	EP	1210 1420	4	25-40	G	4444	F	М	RU	7.1
260	EP	780 900 1100	4	25-40	G F	4343	F	SM	RU	7.1
261	Esp	1470	16	25-40	E G	3534	E	L	UI	5.6
262	Esp	1380	16	25-40	E G	3443	E	L	UI	5.2
263	Esp	810 760	8	25-40	G	3333	G F	SM	RU	4.2
264	Esp	790 870	8	25-40	G	4444	G F	М	RU	4.5
265	SM	600 970 1430	12	25-40	G	4482	G F	М	RU	6.9
266	SM	1210	8	25-40	F	8060	F	SM	UU	

No.	Species	Circ	Height	Age	Vigour	Canopy	Structure	RLE	Importance	Root extent
267	SM	1000 1050 1290	15	25-40	F	4486	FP	S	R U	7.4
268	SM	1780	10	25-40	D	3666	Р	0	UU	
269	SM	820 1680	15	25-40	FΡ	8806	Р	S	RU	7.1
270	SM	400 1330 850 1150	15	25-40	F	10 0 6 10	FP	S	RU	9.2
271	MP	1420	15	25-40	G	3433	G F	L	UΙ	5.4
272	MP	1560	15	25-40	G F	2432	G	L	UI	6
273	MP	1470	12	25-40	G F	4242	G	L	UΙ	5.6
274	MP	1180	12	25-40	G	1111	G	L	UI	4.5
275	MP	1410	15	25-40	G	4434	G	L	UI	5.4
276	SM	1560	15	25-40	F	0 10 10 10	Р	S	UU	
277	SM	1780	12	25-40	G F	8648	F	SM	UU	
278	Esp	1180	6	25-40	G F	6460	F	SM	UU	
279	EP	1250	8	25-40	F	4442	F	SM	UU	
280	SM	1230	12	25-40	G	8846	F P	S	UU	
281	SUG	1670	12	25-40	G F	66610	F	М	UU	
281	SP	1740	15	25-40	G F	6468	G	М	UI	6.6
282	SUG	1450	12	25-40	G	4666	F P	SM	0.0	
283	SM	1390	15	25-40	G	2421	F	М	UU	
284	MP	1460	15	25-40	G	4242	G	L	U I	5.5
285	MP	1540	15	25-40	G	2335	G	L	UI	5.8
286	MP	1270	15	25-40	G	4033	F	М	0.0	
287	RRG	1520	6	25-40	F	6346	P	SM	<u> </u>	
288	Esp	1260	8	25-40	F	6636	F P	S	00	6.2
289	Esp	950 820 1020	8	25-40	F	8466	FP	S	RU	6.2
290a	EP	1610 1320	12	25-40	F	6224	F	М	0.0	5.1
290	MP		15	25-40 25-40	G	1222	G	L	U I	5.1
291 293	MP MP	1410 1480	15 15	25-40	G	3 3 2 2 3 2 2 2	F	ML	U U U I	5.6
295	RRG	2060	10	25-40	G	6688	G	L	RI	7.8
296	EP	1580	10	25-40	F	4222	F	SM	00	7.0
297	SM	1330 490	12	25-40	G	6486	F	SM	RU	5.4
298	SUG	1780	12	25-40	F	4446	F	M	00	5.4
299	SUG		12	25-40	F	6464	F	M	<u> </u>	
300	EP	1210	12	25-40	G F	6262	F	M	<u> </u>	
301	SUG	1360	12	25-40	GF	3445	F	M	<u> </u>	
302	SM		8	25-40	F	8664	F	SM	RU	7.3
303	AR	1380	4	25-40	P	10 1 0 0	Р	S	UU	
304	AR	1270	10	25-40	F	6666	FP	S	UU	
305	AR	1320	12	25-40	F	4464	FP	S	UU	
306	AR		8	25-40	F	4443	F	SM	RU	6.7
307	EP	500 500	4	25-40	F	4234	P	S	UU	
308	Esp	5x 250	3	25-40	F	1344	Р	S	UU	
309	EP	4x 400	3	25-40	F	4334	Р	S	UU	
310	Esp	1350	12	25-40	G F	8488	F	SM	UU	
311	AR	4x150	4	25-40	F	1333	P	S	UU	
312	AR	1210	12	25-40	F	6060	F P	S	UU	
313	EP	2270	20	30-40	G	10 10 8 8	G	ML	R I	8.7
314	SUG	1520	20	20	F	6343	F	М	UU	
315	SUG	1850	20	25-40	G	4644	G	ML	UΙ	7.1
316	SUG	2020	20	25-40	G	8684	G	ML	R I	7.8
317	SUG	2080	20	25-40	G	8446	F	М	RU	7.8
318	WW	1680	5	25-40	P	2333	Р	S	UU	
319	WW	1640	12	25-40	G	6644	F	М	UU	

Arborist Report-Final Issue-DFC-LMC Property-Strathmont Centre-Oakden-tas-1262-November-2010

No.	Species	Circ	Height	Age	Vigour	Canopy	Structure	RLE	Importance	Root extent
320	WW	3460	20	50-60	GF	8888	F	М	RU	12.9
321	WW	4220	18	60	F	6668	F	М	RU	16.1
322	SUG	1780	22	25-40	G	4444	G	L	UI	6.8
323	Esp	1380	12	15	D	6604	D	0	UU	
324	WW	2840	18	60	D	8448	Р	0	RU	10.8
325	WW	3980	22	50-60	G	8684	F	М	RU	15.2
326	WW	2480	18	60	FG	8 0 8 10	F	SM	RU	9.5
327	SUG	2550	25	40	G	8346	F	ML	RU	9.7
328	SUG	1680	5	10	F	2023	P	SM	UU	
329	RRG	2640	15	50-60	G	88812	G	L	R I	10.1
330	RRG	1780	8	25	G	6648	G	L	UI	6.8
331	Esp	1330	15	25	GF	6444	G	ML	UI	5.1
332	Esp	1510	18	25	G	3443	G	ML	UI	5.8
333	SUG	2490	22	25-40	G	8666	G	L	R I	9.5
335	MP	1760	18	25-40	G	4454	G	L	UΙ	6.7
336	SM	1270 1330	10	25-40	FΡ	6 4 10 4	F	S	RU	7
337	SUG	1240	15	25-40	G	6282	F P	SM	UU	
338	RRG	1330	8	25-40	G F	3444	G F	ML	UU	
339	SM	550 950 1400	12	25-40	GF	8646	F	SM	RU	6.8
340	Esp	1580	6	25-40	G	2668	Р	S	UU	
341	Esp	1470	6	25-40	G	5544	F	SM	UU	
342	SM	1950	8	25-40	F	3535	Р	S	UU	
343	MP	1310	15	25-40	G	2231	G	L	UU	
344	MP	1350	15	25-40	G	1221	G	L	UU	
345	MP	1380	15	25-40	Р	1450	Р	S	UU	
346	AR	1620	12	25-40	Р	2662	F	S	UU	
347	AR	1690	15	25-40	F	10 1 0 2	P	S	UU	
348	AR	1820	15	25-40	FΡ	8424	FP	S	UU	
349	AR	1250 870	8	25-40	FΡ	3216	Р	S	RU	5.8
350	SUG	1770	22	25-40	G	6556	G	L	UU	
351	Esp	1210	5	25-40	G	4342	F	М	UU	
352	Esp	1590	5	25-40	F	3450	P	S	UU	
353	MP	1430	15	25-40	E	3333	G	L	UU	
354	MP	1370	10	25-40	E	2322	G	L	UU	
355	MP	1610	15	25-40	E	3 3 2 2	G	L	UU	
356	Esp	1620	8	25-40	G	8066	F P	S	UU	
357	Esp	1450	6	25-40	Р	6266	F	S	UU	
358	Esp	1320	6	25-40	F	6 10 3 4	F	SM	UU	
359	EP	1470	10	25-40	F	6444	F	М	UU	
360	SUG	2390	22	25-40	G	10866	G	L	R I	9.1
361	AR	1780	8	25-40	F	8482	Р	S	UU	
362	Esp	1530	8	25-40	F	8066	F	SM	UU	
363	Esp	1470	8	25-40	Р	4 0 2 4	Р	S	UU	
364	EP	1610	8	25-40	Р	0064	F	S	UU	
365	EP	1450	5	25-40	G	4424	F	ML	UU	
366	EP	1430	5	25-40	G	3636	F	ML	UU	
367	Esp	1350	6	25-40	G	4 2 2 3	G	М	UU	
368	MA	1410	3	25-40	D	4322	Р	0	UU	
369	Esp	1580	8	25-40	G	4433	G	М	UU	

AUDIT NOTES

- Trees with trunk circumferences greater than 2000mm are REGULATED by the Development Act 1993.
- Trees with lesser circumferences are UNREGULATED.
- Trees which are REGULATED and considered to be in good health and structural condition, offering reasonable asset lifespan and amenity are designated as IMPORTANT. Note the Development Act 1999 contends that trees with trunks greater than 2000mmØ which offer attributes of importance are Significant.
- Trees of lower quality, structurally impaired, offering limited asset life and amenic expectancy are designated UNIMPORTANT and therefore not significant.
- Therefore trees of good quality which offer importance can be REGULATED or UNREGULATED.
- REGULATED trees offering IMPORTANT attributes are highlighted in GREEN.
- REGULATED Trees offering UNIMPORTANT attributes are highlighted in **PURPLE**.
- UNREGULATED trees offering IMPORTANT attributes are highlighted in **BLUE**.
- UNREGULATED trees offering UNIMPORTANT attributes are highlighted in **ORANGE**.
- UNREGULATED trees that are likely to be become REGULATED in the next few years (post date of this report) are identified with a RED tag in the audit sheet.
- Estimates of age are just that and may be inaccurate due to a wide range of factors.
- Vigour or health is nominated across a range of Excellent, Good, Fair, Poor and Dead values.
- Tree structure is nominated across a range of Excellent, Good, Fair and Poor values
- Root extent refers to the radius of secondary roots as measured from the centre of the trunk as per AS 4970-09 Protection of Trees on Development Sites. This measure provides a preliminary indication of the extent to which development could be offset.
- Remaining life expectancy is a consideration of a specimen's health, age, structural condition and species lifespan. Values of O (Zero time or Dead), Short term (0-5 yrs), Short-Medium term(5-10 yrs), Medium term (10-25 yrs), Medium-Long term (25-50 yrs), Long term (50 yrs +).
- Canopy is measurements in metres north, south, east and west.
- Root extent refers to the radius of secondary roots or TPZ as measured from the centre of the trunk as per AS 4970-09 Protection of Trees on Development Sites. Whilst he standard contends that 10% of the TPZ can be removed, risk posed by large limbs (as per QTRA methodology) should be considered when determining suitable and safe builtform offsets.
- The aim of the audit is to generate the basis for consideration of whether trees should be capable of removal or whether their retention would be required by Council. Trees with obvious health and structural defects have been identified as suitable for removal. The amenity offered by healthy trees with good structural form is also considered in terms of the constraints to placement of new development within the property, the relative isolation of the subject tree or the grouping or context of the subject tree to other trees of greater importance. Thus the audit findings provide a recommendation and guidance for the prospective purchaser of the property as to how Council approval for tree removal or retention would likely follow.
- Species codes to follow.

SPECIES CODE

Code	Common name	Botanic name
AR	Wirilda	Acacia retinoides
ASH	Flowering Ash	Fraxinus ornus
CA	Carob	Ceratonia siliqua
CL ASH	Claret Ash	Fraxinus raywoodii
EB	Bangalay	Eucalyptus botryoides
EM	Grey Box	Eucalyptus microcarpa
EP	Peppermint Gum	Eucalyptus odorata
ES	Ironbark	Eucalyptus sideroxylon
Esp	Assorted small Gums	Eucalyptus torquata
		E porosa
		E lehmanii
		E diversifolia
		E obliqua
		E viridus
		E intertexta
EV	Manna Gum	Eucalyptus viminalis
KP	Golden rain Tree	Koelreuteria paniculata
LSG	Lemon Scented Gum	Corymbia citriodora
MA	White cedar	Melia azaderach
MP	Longleaf Pine	Pinus palustris
PC	Peppercorn	Schinus molle
QB	Qld Box	Lophostamen conferta
ROB	Robinia	Robinia psuedoacacia
RRG	River Red Gum	Eucalyptus camaldulensis
SA	Bush Cherry	Syzygium australe
SABG	South Australian Blue Gum	Eucalyptus leucoxylon
SM	Swamp Mallet	Eucalyptus spathulata
SO	She-Oak	Casuarina or Allocasuarina sps
SP	Spotted Gum	Corymbia maculata
SUG	Sugar Gum	Eucalyptus cladocalyx
TAM	Tamarix	Tamarix aphylla
TT	Tea tree	Leptospermum petersonii
WM	Willow Myrtle	Agonis flexuosa
WW	Weeping Willow	Salix bablonica

Dead gums east of central car park. Species unknown but selection which occurred in 1960's often focused on western Australian species, generally intolerant of heavy clay soils and poor drainage resulting in root rot and dieback.

Ring planting of unknown gum species. Note flared base of trunk likely indicates termite colonisation with 2 of the 5 dead.

Species selection also addressed South Australian species such as these Mallee Box's *Eucalyptus porosa* with short trunks and multi branching spreading habit which generates small singular unregulated trees or parkland character when massed such as here at Oakden.

A row of Swamp Mallet Eucalyptus *spathulata* along the internal road to the south-east. Poor species performance in Adelaide has caused their selection to cease. Prone to borers and termites, the species has elongated limbs which often fatigue. Here 4 regulated and unregulated trees grow as one form making selective removal and retention problematic.

Swamp Mallet also is subject to root rot in heavy clay soils such as at Oakden. Here the tree has partially collapsed (windthrow) making removal despite regulation likely.

The south-eastern portion of the site previously housed hospital associated accommodation arranged around courtyards with access roading. Smaller trees were grown in the courtyards and larger species were grown along the roadways, most of which are unregulated yet offer some amenic importance.

tree assessment services

Larger trees in the accommodation area, now demolished leaving behind larger native trees, mostly regulated but with faults. The Native Pine in centre is regulated in good condition

Remnant row of Cypress Pines (not audited) in accommodation area with native tree regeneration. Excellent River Red and SA Blue Gum specimens selfsewn unregulated but offering long term amenity deserve to be retained.

The eastern interface of the accommodation area and the mass planted area further east with a seemingly fine specimen Tree 39 Peppermint Box *Eucalyptus odorata*.

Detail view of trunk base of previous photo of Peppermint Box showing extensive structural decay and trunk breaking apart.

Swamp Mallet with its elongated poorly tapered limbs, in this case fatiguing, resulting in short remaining amenic lifespan.

Very large Willows at north-western corner of site in bog. Probably the largest girth Willows in SA, over-mature and set back due to drought.

Mexican Longleaf Pine *Pinus palustris* planted in groups across the site all Unregulated in good condition with good upright form.

One of the few Regulated Important trees in the audit although Tree 122 is actually off-site, extending roots and canopy into site.

Dwarf form of Sugar Gum Eucalyptus cladocalyx nana Tree 129 regulated with short trunk and elongated poorly tapered limbs.

Attempts were made to regiment the plantings along Grand Junction Rd frontage although inconsistent with differing species growth response and loss or absence of others reduces amenic value of as buffer.

Sugar Gum may be a recent planting or an older tree growing poorly possibly due to heavy soil. Poor tapered structure unsuitable for retention in a converted urban context.